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Abstract

Big Data received from sources such as social
media, in-stream monitoring systems, networks,
and markets is often mined for discovering pat-
terns, detecting anomalies, and making decisions
or predictions. In distributed learning and real-
time processing of Big Data, ensemble-based
systems in which a fusion center (FC) is used
to combine the local decisions of several clas-
si�ers, have shown to be superior to single ex-
pert systems. However, optimal design of the FC
requires knowledge of the accuracy of the indi-
vidual classi�ers which, in many cases, is not
available. Moreover, in many applications su-
pervised training of the FC is not feasible since
the true labels of the data set are not available.
In this paper, we propose an unsupervised joint
estimation-detection scheme to estimate the ac-
curacies of the local classi�ers as functions of
data context and to fuse the local decisions of
the classi�ers. Numerical results show the dra-
matic improvement of the proposed method as
compared with the state of the art approaches.

1. Introduction

Ensemble-based approaches have proven to be more ac-
curate than single-classi�er systems for many applica-
tions involving decision making, prediction, classi�ca-
tion, or detection (Kuncheva & Whitaker, 2003). Fur-
thermore, for problems with high computational complex-
ity, ensemble-based approaches allow for distributed pro-
cessing which results in load sharing among the individ-
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ual classi�ers. Due to their high computational complex-
ity, Big Data applications including data mining, deci-
sion making, and prediction demand parallel processing for
which ensemble learning is well-suited (Zhang et al., 2013;
Tekin & van der Schaar, 2013).

An ensemble system is comprised of a set of (possibly het-
erogeneous1) classi�ers and a combining rule for fusing the
classi�ers' outputs. Individual classi�ers may be trained
with different data sets and by judiciously combining their
outputs we can achieve a more accurate decision; a set of
linear (or nonlinear) classi�ers may be used to span the data
space to a complicated nonlinear boundary.

The fusion center (FC) which combines the local deci-
sions of the classi�ers plays the key role in the perfor-
mance of the overall system. Several different fusion rules
have been proposed in the literature. The majority rule
may be employed when no information on the performance
of the classi�ers is available (Kuncheva, 2004). On the
other hand, weighted majority rule can be used when the
performances of individual classi�ers are known a pri-
ori. Another approach is to construct a look-up table dur-
ing the test and validation procedure including the out-
put patterns of the classi�ers and their corresponding la-
bels. This approach, known as Behavior Knowledge Space
(BKS), actually estimates the densities of the classi�er out-
puts and requires large training and validation data sets
(Huang & Suen, 1995). For some ensemble systems the
classi�ers and the FC are trained together using a joint pro-
cedure such as stacked generalization or mixture of classi-
�ers (Wolpert, 1992; Jacobs et al., 1991).

Optimal fusion of local decisions requires the a priori
knowledge of the accuracy of the classi�ers which, in many
applications, may not be available. For example, the data
may have an extremely large dimension which makes it im-

1Here heterogeneity of classi�ers implies that they have dif-
ferent error rates in classifying the data (Webb & Copsey, 2011).
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precise to evaluate the accuracy of the classi�ers based on
the training and validation sets; or the data stream may be
time-varying for which accurate evaluation of the classi-
�ers' performance is impractical.

In many applications the data stream is received along with
its own context. The context may be a small side informa-
tion such as a description of the way the data is acquired,
(Tekin & van der Schaar, 2013), or it may be a small di-
mensional portion of the actual high dimensional data rep-
resenting one of its features or attributes. Since the accura-
cies of the classi�ers vary with the data context, optimal fu-
sion rule requires knowledge of the accuracies of the clas-
si�ers for every arriving context resulting in prohibitively
high costs in processing, communication and storage re-
quirements.

In this paper we assume that no prior information regarding
the classi�ers' performance is available. The details on the
working of each classi�er, and how they receive their data
is also unknown. Each classi�er may work with a different
part of the Big Data, the preprocessed data, or even differ-
ent correlated data from distributed multiple sources. We
propose an unsupervised method based on the Expectation-
Maximization (EM) algorithm, (Dempster et al., 1977), for
evaluating the accuracies of the classi�ers as functions
of context as well as fusing the decisions of individual
classi�ers. To this end, we introduce a model for esti-
mation of the classi�ers' accuracies in terms of proba-
bilities of false alarm and detection. As such the pro-
posed approach allows for maximum likelihood estima-
tion of the classi�er parameters based on unlabeled data.
This model is different from other typical models in which
the probability of correct decision is used to evaluate the
performance of classi�ers, (Tekin & van der Schaar, 2013;
Canzian & van der Schaar, 2014). Our approach is also dif-
ferent from that in (Platanios et al., 2014) where the accu-
racies of classi�ers are estimated for unlabeled data. The
authors assume that several (at least three) classi�ers op-
erate on the same data set and the classi�ers make inde-
pendent errors. By calculating the agreement rates of the
classi�ers, the authors are able to estimate the error-rateof
each classi�er. This method does not work if only a single
classi�er operates on each data set.

2. Problem Formulation and Notations

We consider an ensemble learning system withK classi-
�ers each classifying an input data stream characterized by
its context. Every classi�er makes a local decision which
it delivers to the FC for the �nal decision. Since multiple-
choice decision making can be divided into a set of binary
decision problems, (Lienhart et al., 2003), without loss of
generality we consider the binary decision problem here.

Let the portion of data available for thekth classi�er be
denoted bysk (t) 2 Sk , and letX (t) 2 X be the context
of the received data wheret is the integer-valued time in-
dex2. The context, which may be a vector in general, may
represent a side information about the data or it may be a
subset of the features (attributes) of the data. For instance,
in the case of image labeling, the context may be the cam-
era resolution. The setX is assumed to be a (subset of a)
metric space with the metricdX (x1; x2) that represents the
distance betweenx1 andx2. Let y(t) 2 Y , f 0; 1g denote
the true label at timet. In the proposed approach, the true
label y(t) is not available for training. Moreover, we are
not concerned about how the classi�ers classify the data.
However, the accuracy of each classi�er is estimated as a
function of the contextX (t).

Let X(t0) , [X (t0); X (t0 + 1) ; � � � ; X (t0 + T � 1)] and
y(t0) , [y(t0); y(t0 +1) ; � � � ; y(t0 + T � 1)] denote the ob-
served vector of contexts and the unobserved vector of true
labels, respectively, for a durationT starting att0. As men-
tioned previously,y(t0) is not available and its detection is
also a part of the proposed approach. Note that in this and
subsequent sections,t is in the ranget0 to t0 + T � 1, k
goes from1 to K , andi goes from0 to 1. We de�ne the
label matrix, by �( t0) = [ � i (t)]2� T , where columnt of
� corresponds to the true labely(t), and at each timet,
one of the elements in columnt is 1 and the other is0. If
� 0(t) = 0 , then� 1(t) = 1 , indicating that at timet we have
y(t) = 1 ; similarly, if � 0(t) = 1 , then� 1(t) = 0 , indicating
that at timet we havey(t) = 0 .

Let ŷk (t) be the local decision of thekth classi�er at time
t and letŷ(t) = [ ŷ1(t) ŷ2(t) : : : ŷK (t)]y denote the vec-
tor of K local decisions at timet, wherey represents the
transpose operation. Finally, letŶ (t0) = [ ŷk (t)]K � T de-
note the collection of local decisions of all classi�ers for
durationT. The FC receives the decisions of all the clas-
si�ers, Ŷ (t0), (as well as the contextX(t0)) and needs to
fuse them to get an estimate of the true labels. However,
for judicial fusing of the received decisions, the FC must
estimate the accuracy of each classi�er.

To model the accuracy of the classi�ers, we associate a
probability of detection and a probability of false alarm
with each classi�er.

Since the performance of a classi�er depends on the con-
text of the data it receives, these probabilities are assumed
to be functions of the context. For a �xed context, how-
ever, a classi�er has �xed probabilities of detection and
false alarm. Therefore, for contextx and for classi�erk,
we de�ne the probability of detection, denoted byp1k (x),

2For other applications such as processing a database, time can
be replaced by the index of the data sample.
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and the probability of false alarm, denoted byp0k (x) as

pik (x) , p(ŷk (t) = 1 j � i (t) = 1; x); i = 0 ; 1 (1)

We assume that the probabilitypik (x) is Lipschitz contin-
uous with Lipschitz constantscik , i.e.,

jpik (x1) � pik (x2)j � cik dX (x1; x2) (2)

This assumption which imposes a constraint on how fast
a classi�er's accuracy can change with context is clearly
valid in most practical situations, (Kleinberg et al., 2008;
Tekin & van der Schaar, 2013). For instance, in the case of
image labeling, where the context may be the camera reso-
lution, it is not expected that the accuracy of a classi�er can
change sharply with a small change in the resolution of the
images. We arrange these probabilities for all the classi�ers
into a matrixP(x) , [pik (x)], i = 0 ; 1, k = 1 ; 2; : : : ; K .
Note that the FC does not knowP(x) and one of the goals
of our proposed method is to estimate it. In addition, in the
formulation above and the proposed solution, the context
variablex may be vector-valued. For example, if several
features are considered as part of the context, thenx will
be a vector. In this case, the metricdX (x1; x2) may be
chosen to be anL � norm for some� � 1.

In order to facilitate the detection of the true labels we
assign probabilities� 0(t) and � 1(t) to label y(t) and ar-
range them in a matrix�( t0) = [ � i (t)]2� T , where� i (t) =
p(� i (t) = 1) and� 0(t) + � 1(t) = 1 . We should point out
that the probabilities� i (t) do not represent a prior prob-
ability of the true labels. They are introduced in order to
convert the problem of detection of the true labels into the
problem of estimation of the� i (t)'s which is then solved
using the EM algorithm. Also, please note that neither
�( t0) nor �( t0) are available to the FC. They are assumed
to be unknown parameters which are evaluated in the pro-
posed method in order to estimateP(x) and to detect
Ŷ (t0). To summarize, the two-tuple,� = f P(x); �( t0)g
is de�ned as the unknownparameter setwhich the FC tries
to estimate based on the local decisions of the classi�er,
Ŷ (t0), and context of the data,X(t0). After estimating the
parameter set� , the FC detects the true labelsy(t0). In
the next section, we propose an approach based on the EM
algorithm for the FC to achieve these goals.

Remark: One may ask whether, instead of the detection
and false alarm probabilities of the classi�ers, their accu-
racies (i.e., the error probabilities) can be estimated. The
problem is that for the case of unsupervised learning being
considered here, we do not know how to solve the problem
in terms of the error probabilities of the classi�ers. More-
over, it is clear that given the detection and false alarm
probabilities of individual classi�ers, we can implement the
maximum likelihood (ML) fusion rule. However, given the
accuracies, we cannot formulate an ML fusion rule.

3. Estimation of the Classi�ers' Accuracies
and Decision Making

In this section, given the local decisions,Ŷ (t0), and the
observed vector of contexts,X(t0), we �rst develop an es-
timation method for� . We then use the estimated�( t0) to
detect the true labelsy(t0).

3.1. Estimation Procedure

The maximum likelihood estimate of� given Ŷ (t0) and
X(t0) is given by

�̂ = arg max
�

X

�

p(Ŷ (t0); �( t0) j � ; X(t0)) (3)

By considering�( t0) as a latent variable, the mixture
model in (3) can be iteratively solved using the EM algo-
rithm. First, we evaluatep(Ŷ (t0); �( t0)j� ; X(t0)) from

p(Ŷ (t0); �( t0)j� ; X(t0)) =
Y

t

Y

k

Y

i

(4)

h
pŷk ( t )

ik (X (t)) (1 � pik (X (t))) 1� ŷk ( t ) �
1
K
i (t)

i � i ( t )

The log-likelihood function, logp(Ŷ (t0); �( t0) j
� ; X(t0)) , is obtained as

L(�; Ŷ (t0); �( t0); X(t0))

=
X

k

X

t

X

i

� i (t)
h
ŷk (t) log pik (X (t))

+ (1 � ŷk (t)) log (1 � pik (X (t))) +
1
K

log � i (t)
i

(5)

The two steps of EM algorithm are described below.

Expectation step: In this step, the expectation of the
log-likelihood function, denoted byQ(�; � old) is evalu-
ated with respect to the conditional distributionp(�( t0) j
Ŷ (t0); � old) of the latent variable�( t0), where� old is the
previous estimate for� . That is,

Q(�; � old) (6)

= E �( t 0 ) j Ŷ ( t 0 );� old

h
L(�; Ŷ (t0); �( t0); X(t0))

i

=
X

k

X

t

X

i

 (i; t )
h
ŷk (t) log pik (X (t))

+ (1 � ŷk (t)) log (1 � pik (X (t))) +
1
K

log � i (t)
i

where EA jC;D;::: denotes expectation with respect toA
given the variablesC andD, : : : , and where

 (i; t ) = EH jY ;� old [� it ] = p(� it = 1 j Y ; � old; X (t))

= p(� it = 1 j ŷ(t); � old; X (t)) = (7)

� old
i (t)

Q
k

�
pold

ik (X (t))
� yk ( t ) �

1 � pold
ik (X (t))

� 1� yk ( t )

1P

j =0
� old

j (t)
Q

k

�
pold

jk (X (t))
� yk ( t ) �

1 � pold
jk (X (t))

� 1� yk ( t )



Context-based Unsupervised Data Fusion for Decision Making

Maximization step:In this step,Q(�; � old) is maximized
with respect to� . In maximizingQ(�; � old) with respect
to � i (t) we must consider the constraint

P 1
i =0 � i (t) = 1 .

Using the Lagrange multiplier method, we get

� new
i (t) =

 (i; t )
P 1

j =0  (j; t )
=  (i; t ) (8)

We would like to note that sinceQ(�; � old) is a concave
function of� i (t), and the constraint is linear, the above La-
grangian method results in the optimal solution for�( t0).

Maximization ofQ(�; � old) with respect topik (X (t)) is
also a constraint optimization problem given by

pnew
ik (X (t)) = arg max

pik (X ( t ))
Q(�; � old) (9)

subject to:

jpik (x1) � pik (x2)j � cik dX (x1; x2) ; 8x1; x2 2 X

0 � pik (x) � 1 for i = 0 ; 1; k = 1 ; 2; : : : ; K; 8x 2 X

It can be shown thatQ(�; � old) is a concave function
of pik (X (t)) . Therefore we can use convex optimization
methods to solve (9). Towards this let

%ik (l; j ) , cik dX (x(l ); x(j )) (10)

pik (t0) , (11)

[pik (X (t0)) ; pik (X (t0 + 1)) ; : : : ; pik (X (t0 + T � 1))]y

 (pik (t0)) ,
X

t

 (i; t )
�

ŷk (t) log pik (X (t))+ (12)

(1 � ŷk (t)) log (1 � pik (X (t)))
�

Then, to maximizeQ(�; � old) with respect topik (x) sub-
ject to the Lipschitz continuity constraint in (2), we can
solve the constrained optimization problem given by

pnew
ik (t0) = arg max

pik ( t 0 )
 (pik (t0)) (13)

subject to:

jpik (x(t0 + l)) � pik (x(t0 + j )) j � %ik (l; j ) 8 l; j;

0 � pik (X (t)) � 1 for i = 0 ; 1; k = 1 ; 2; : : : ; K;

t = t0; t0 + 1 ; : : : ; t0 + T � 1

We can rewrite (13) as

pnew
ik (t0) = arg max

pik ( t 0 )
 (pik (t0)) (14)

subject to:� pik (t0) � %ik ; 0 � pik (t0) � 1

where the inequalities are component-wise, and0 and1 are
the all-zero and the all-one column vectors of lengthT, re-
spectively, and where� and%ik are de�ned below. Note

that the objective function in (14) is concave and the con-
straints are linear; Therefore, (14) can be solved using the
interior point methods, (Boyd & Vandenberghe, 2004).

By iterating between the expectation and the maximization
steps, until a stopping criterion is satis�ed3, we �nd an es-
timation of the parameter set4. We denote the �nal esti-
mates of the parameter set by~� , and the �nal estimates of
P(x) = [ pik (x)] and� = [ � i (t)] by ~P(x) = [~pik (x)], and
~� = [ ~� i (t)], respectively.

� ,

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 2 3 4 ��� T � 1 T

1 1 � 1 0 0 � � � 0 0
2 � 1 1 0 0 � � � 0 0
3 1 0 � 1 0 � � � 0 0
4 � 1 0 1 0 � � � 0 0
...

2T � 1 1 0 0 0 � � � 0 � 1
2T � 1 0 0 0 � � � 0 1

2T +1 0 1 � 1 0 � � � 0 0
2T +2 0 � 1 1 0 � � � 0 0
2T +3 0 1 0 � 1 � � � 0 0
2T +4 0 � 1 1 1 � � � 0 0

...
4T � 1 1 0 0 0 � � � 0 � 1
4T � 2 � 1 0 0 0 � � � 0 1

...
...

T 2 � T � 1 0 0 0 0 � � � 1 � 1
T 2 � T 0 0 0 0 � � � � 1 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

and

%ik ,

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 %ik (1; 2)
2 %ik (1; 2)
3 %ik (1; 3)
4 %ik (1; 3)
...

...
2T � 1 %ik (1; T )

2T %ik (1; T )
2T +1 %ik (2; 3)
2T +2 %ik (2; 3)
2T +3 %ik (2; 4)
2T +4 %ik (2; 4)

...
...

4T � 1 %ik (2; T )
4T � 2 %ik (2; T )

...
...

T 2 � T � 1 %ik ((T � 2); T )
T 2 � T %ik ((T � 1); T )

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

In order to evaluatepik (x) for all x 2 X , we note that for

3A stopping criterion could be a selected number of iterations
or a threshold on the percentage difference between the last two
estimations.

4For a discussion of the convergence properties of the EM al-
gorithm we refer to (Dempster et al., 1977; Bishop, 2006).
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any j = t0; t0 + 1 ; � � � ; t0 + T � 1, i = 0 ; 1 and k =
1; 2; � � � ; K ,

~pik (x(j )) � cik dX (x; x (j )) � ~pik (x) (15)

~pik (x(j )) + cik dX (x; x (j )) � ~pik (x) (16)

Therefore, we can interpolate the values ofpik (x(t0 + l)) ,
l = 0 ; 1; � � � ; T � 1 to obtainpik (x) for anyx 2 X . Let

p1ik (x) = max
t 0 � j � t 0 + T � 1

f ~pik (x(j )) � cik dX (x; x (j ))g

(17)

p2ik (x) = min
t 0 � j � t 0 + T � 1

f ~pik (x(j )) + cik dX (x; x (j ))g

(18)

We then set5

~pik (x) = min f p1ik (x); p2ik (x)g (19)

Remark: The Lipschitz constantscik affect the perfor-
mance of the algorithm in estimating the parameterspik (x)
as functions ofx. As evident from (2), (15) and (19),
smaller values ofcik result in a smoother estimate for
pik (x), while larger values ofcik allow for larger varia-
tions in the estimates. Therefore the Lipschitz constants
cik must be selected in accordance with the performance of
the classi�ers vs. the context variables. In particular, iffor
example the detection performancep1k (x) of thekth clas-
si�er is believed to be very sensitive to the context variable
x, i.e., small changes inx result in large changes inp1k (x),
then the value ofc1k must be chosen to be large. On the
other if the detection performance of thekth classi�er is
not very sensitive to the context variablex, then a smaller
value should be assigned toc1k . That said, we would like
to also point out that the Lipschitz condition in (2) is only
introduced to enable the estimation of the functionspik (x).
If the selected parameterscik do not satisfy (2) for the true
functionspik (x), then our algorithm still works. However,
in this case our estimates ofpik (x) will not be very accu-
rate. In Fig.2 of Section4 we present results of the estima-
tions for different values of the Lipschitz constants which
verify this statement.

3.2. Fusion Center's Decisions

In the previous section, we evaluated the estimates of prob-
abilities of false alarm and detection for all the classi�ers as
well as the prior probabilities of the true labels~� . To detect
the true labels of the classi�ers we use the maximum like-
lihood detection ofy(t) given the probabilities,~� , namely

5The minimum in (19) provides a maxmin approximation for
the values of detection (false alarm) probabilities that have been
calculated. This is an interpolation problem and our approach is
admittedly heuristic. Another approach is to select the median or
mean.

Algorithm 1 Estimation of the parameter set and FC's de-
cisions
Input: The local decisions ofK classi�ers fromt0 to t0 +
T � 1, Ŷ (t0) and the corresponding contexts,X(t0)
Output: The estimation of the probabilities of false alarm
and detention for all of the classi�ers,~P, and the made
decisions,~y

Assume an initial estimation for� new

while Stopping criterion is not satis�eddo
pold

ik (X (t))  pnew
ik (X (t))

� old
i (t)  � new

i (t)
Find  (i; t ) using (7)
Find � new

i (t) andpnew
ik (X (t)) using (8) and (14)

end while
For all x 2 X , interpolate the values ofpnew

ik (x(t0 + l))
using (17)-(19)
~�  � new

Make decisions using (20)

~yEM(t) = arg max y( t ) p(y(t) j ~�) which is given by

~y(t) =
�

1; ~� 1(t) > ~� 0(t)
0; otherwise.

(20)

We denote the �nal detected labels by~y = [~y(t0); ~y(t0 +
1); : : : ; ~y(t0 + T � 1)]. The entire procedure of estimating
the parameter set and making decisions is summarized in
Algorithm 1.

4. Numerical Results

In this section, �rst we use a system with up to8 classi�ers
to evaluate the performance of the proposed approach. The
probabilities of false alarm and detection of these classi�ers
as a function of the contextx are shown in Table1. These
probabilities are selected so as to represent a variety of be-
haviors. In particular, the classi�ers are not very accurate,
and for many values of the context, their false alarm and de-
tection probabilities are close to0:5. TheL 1 norm is used
as the distance measure, i.e.,dX (x1; x2) = kx1 � x2k1.
The values of the Lipschitz constants are also shown in Ta-
ble 1. These values are selected so as to satisfy the condi-
tion in (2).

In Fig. 1 we show the performance of the proposed
method in estimating the probabilities of false alarm and
detection of the individual classi�ers. To show the con-
vergence speed of the proposed approach, we use a sys-
tem with 4 classi�ers; namely Classi�ers1 � 4 from
Table 1. We initialize the EM algorithm with all the
probabilities of false alarm equal to0:2, all the proba-
bilities of detection equal to0:8, and � 1(t) = 0 :6 for
t = t0; t0 + 1 ; � � � ; T + t0 � 1. The parameterT is
chosen to be100. The estimated probabilities of false
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Table 1. The probabilities of false alarm and detection of the classi�ers.
p0k (x ) c0k p1k (x ) c1k p0k (x ) c0k p1k (x ) c1k

Classi�er 1 � 2x 2 + 2 x 2.0 :5 + :5 jsin(2 �x ) j 3.1 Classi�er 5 :5x 0.5 :75 + 2( x � :5) 3 1.5
Classi�er 2 2(x � :5) 2 2.0 :9 0.1 Classi�er 6 :25 + 2( x � :5) 3 1.5 :75 � 2(x � :5) 3 1.5
Classi�er 3 :5 jsin(2 �x ) j 3.1 1 � 2(x � :5) 2 2.0 Classi�er 7 :5(1 � x ) 0.5 :75 + :5(x � :5) 0.5
Classi�er 4 :1 0.1 :5 + 2( x � :5) 2 2.0 Classi�er 8 :25 + 2( x � :5) 3 1.5 :5(2 � x ) 0.5

Figure 1.Comparison of the proposed method and the majority rule.

alarm and detection for the four classi�ers are shown in
Fig. 1 for 1; 2 and 5 iterations of the EM algorithm. In
Fig. 1 we also compare the performance of the proposed
method with that of the majority rule which is the most
widely used unsupervised fusion rule for ensemble learning
(Breiman, 1996; Schapire, 1990; Freund & Schapire, 1997;
Herbster & Warmuth, 1998; Canzian et al., 2013). It can be
seen that the difference between the estimations after the
2nd and the5th iterations are very small indicating the fast
convergence of the proposed approach. On the other hand
for the majority rule, the �nal estimated probabilities are
very spiky, and in all of the cases, the proposed approach
signi�cantly outperforms the majority rule. In the rest of
this section, we set the number of iterations to5.

In Fig. 2 we show the effect of the Lipschitz constants
on the �nal estimations. Here we setcik = c for all
i = 0 ; 1 and k = 1 ; 2; � � � ; K . Three different values
of c = 0 :2; 1:7; 3:2 are used. It is evident that for small
value ofc = 0 :2, the estimated detection and false alarm
probabilities are a very smooth function of the contextx.
However, the estimations do not closely follow the actual
functions. On the other hand, forc = 3 :2, the estimation
can better follow the rapid variations ofpik (x) vs. x, but in
this case the estimations are somewhat spiky.

In order to quantify the improvement of the proposed

method over the majority rule we de�ne areliability metric,
denoted byDP where

DP ,
1

2K

KX

k=1

1X

i =0

R
x jpik (x) � p̂ik (x)j dx

R
x pik (x)dx

(21)

The reliability metric in (21) measures the normalized-
error in the estimation of the detection and false alarm
probabilities of all the classi�ers6. Clearly a smaller value
of DP indicates a better performance for the estimator.

In Fig. 3, we show the value ofDP vs. T for different num-
ber of classi�ers, where forK = `, Classi�ers1; 2; : : : ; `
are used. The values ofcik are given in Table1. As shown,
the performance of our method improves with the number
of classi�ers andT and the proposed approach outperforms
the majority rule in all cases.

In Fig. 4 we show the probability of error for the proposed
method vs. the majority rule for the case presented in Fig.
1. It can be seen that the proposed method signi�cantly
outperforms the majority rule.

In order to evaluate the performance of the proposed ap-
proach for real data, we used the Wisconsin breast cancer
data set (Murphy & Aha, 1994). The goal is to classify

6Please note that if the set of context values is discrete, then
the integrals in (21) are replaced with summations.
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Figure 2.Estimations of the probabilities of false alarm and detection vs. context forK = 4 different experts (Expert1-4 from Table1),
T = 100 using the proposed approach forc = 0 :2; 1:7; 3:2.

Figure 3.Reliability, D P versusT for K = 2 ; 4; 8 classi�ers.
The values ofcik are given in Table1.

each data point as benign or malignant.

Remark: We should point out that this data set comes with
true labels. As discussed previously, our algorithm does
not require the true labels and does not utilize the labels in
order to estimate the performance of the classi�ers and for
fusing the decisions of the individual classi�ers. However,
the labels are used in order to evaluate the performance
of our algorithm in terms of correct decisions (see Fig.
6) as well as to compare our results with other methods.
The labels are also used for training the supervised opti-
mal fusion rule (SOFR),(Chair & Varshney, 1986), which
provides a lower bound to the performance of any unsu-
pervised technique (see Fig.6)

Each point in the data set has9 different features: 1) clump
thickness, 2) uniformity of cell size, 3) uniformity of cell

Figure 4.The probability of error for the fusion center vs.T for
the case in Fig.1.

shape, 4) marginal adhesion, 5) single epithelial, 6) bare
nucleoli, 7) bland chromatin, 8) normal nucleoli, and 9)
mitoses. All the features are in the interval[1; 10]. We
used DecisionStump (one-level decision tree), KNN (k-
nearest neighbor classi�er), k-Star (instance classi�er us-
ing entropy as distance), LogitBoost+ ZeroR (ZeroR clas-
si�er uses mode), Multilayer Perceptron, and NaiveBayes
(naive Bayes classi�er) as classi�ers and trained them with
a subset of the data7. Each of these features is considered
as context separately, but due to space limitations, in Fig.
5 we show the performance for clump thickness, unifor-
mity of cell size, bland chromatin, normal nucleoli, and
mitoses. We implemented our approach for each of the con-
texts where for eachi andk we set the Lipschitz constants

7We used machine learning classi�ers from Weka. Detailed
description of each classi�er can be found in (Witten et al., 2011).
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Figure 5.The proposed approach is used in order to evaluate the performance of different classi�ers identi�ed at the top of each sub-
�gure as a function of the contextx.

cik = 0 :058, and the �nal results in terms of probabilities
of false alarm and detection versus context are shown in
Fig. 5. As shown, the NaiveBayes has the worst perfor-
mance. When the context is set to bex = clump thickness,
the performance of k-Star deteriorates with increasingx, in
the sense that the probability of false alarm increases while
the probability of detection does not change. Therefore, if
one wishes to use one of the classi�ers, it can be suggested
that for larger values of clump thickness, it is better to use
Multilayer Perceptron than k-Star. Therefore the proposed
method can be used in this way to determine the ef�cacy of
the individual classi�ers.

To evaluate the performance of the fusion rule in mak-
ing the right decision about benign or malignant sam-
ples, we de�ne the probability of fusion error aspe =
p(~y(t) 6= y(t)) . In Fig. 6, we compare the results of
our unsupervised method with the supervised and unsuper-
vised versions of the method of tracking the best classi-
�er (MTBE), ( Herbster & Warmuth, 1998), adaptive Per-
ceptron weighted majority rule (APMR), (Canzian et al.,
2013), and the SOFR, in term ofpe vs. T. The parameters
for our method are the same as those in Fig.5 with each
feature used as a context with a value between1 and10. It
can be seen that the proposed approach works better than
MTBE and APMR and even the supervised MTBE. APMR
and MTBE do not fuse the data optimally. Moreover, in its
modeling APMR does not “reward” or “punish” the clas-
si�ers who make decisions similar to or different from the
FC even when the FC correctly detects the true label. An-
other fundamental problem with the unsupervised MTBE
and APMR is that since these methods are only concerned

8For this data set and as shown n Fig.5, the variations of
false alarm and detection probabilities with respect to the context
variable are very small.

Figure 6.Comparison of our approach with the method of track-
ing the best classi�er (MTBE), adaptive Perceptron weighted ma-
jority rule (APMR), and supervised optimal fusion rule (SOFR).

with correct detection, they do not properly characterize a
classi�er which has a very high false alarm probability.

5. Conclusion

Ensemble-based systems have proven to be superior to
single-expert systems for Big Data analytics. In many ap-
plications prior information about the accuracies of the in-
dividual classi�ers is not available and the true label of the
data is never observed. In this paper, we propose an unsu-
pervised method to estimate the accuracies of the experts
and to fuse their local decisions to obtain a �nal decision.
The results show the superior performance of the proposed
approach as compared with the state of the art approaches.
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