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ABSTRACT 

 
Demand side management (DSM) is a key solution for reducing 
the peak-time power consumption in smart grids. The consumers 
choose their power consumption patterns according to different 
prices charged at different times of the day. Importantly, 
consumers incur discomfort costs from altering their power 
consumption patterns. Existing works propose stationary strategies 
for consumers that myopically minimize their short-term billing 
and discomfort costs. In contrast, we model the interaction 
emerging among self-interested consumers as a repeated energy 
scheduling game which foresightedly minimizes their long-term 
total costs. We then propose a novel methodology for determining 
optimal nonstationary DSM strategies in which consumers can 
choose different daily power consumption patterns depending on 
their preferences and routines, as well as on their past history of 
actions. We prove that the existing stationary strategies are 
suboptimal in terms of long-term total billing and discomfort costs 
and that the proposed strategies are optimal and incentive-
compatible (strategy-proof). Simulations confirm that, given the 
same peak-to-average ratio, the proposed strategy can reduce the 
total cost (billing and discomfort costs) by up to 50% compared to 
existing DSM strategies. 

Index terms—Smart Grids; Demand Side Management; 
Critical Peak Pricing; Consumer Discomfort; Non-stationary 
Policies; Repeated Games; Incentive Design. 

1. INTRODUCTION 
 
Smart grids aim to provide a more reliable, eco-friendly, and 
efficient power system. Demand Side Management (DSM), a key 
mechanism in smart grids [1], refers to the programs adopted by 
utility companies to directly or indirectly influence the consumers’ 
power consumption behavior in order to reduce the Peak-to-
Average Ratio (PAR) of the total load in the smart grid system.  
 Direct Load Control (DLC) and Smart Pricing (SP) are two 
popular approaches for implementing DSM. DLC refers to the 
program in which the utility company can remotely manage a 
fraction of consumers’ appliances to shift their peak-time power 
usage to off-peak times [2]. Alternatively, SP [5]-[16] provides an 
economic incentive for consumers to manage their power usage. 
Examples are Real-Time Pricing (RTP) [5], Time-Of-Use Pricing 
(TOU) [12], Critical Peak Pricing (CPP) [14]-[16], etc. The above 
works [2][5]-[7][14]-[16], however, do not consider the consumers’ 
discomfort costs induced by altering their power consumption 
patterns. 
 Some recent works aim to jointly minimize the consumers’ 
billing and discomfort costs (referred to subsequently as the total 
cost) [3][4][8]-[13][18][21], and can be divided into two categories. 
One category assumes that the consumers are price-taking (i.e., they 

do not consider how their consumption will affect the prices). Based 
on the price-taking assumption, a single consumer is foresightedly 
minimizing the long-term total cost by solving a stochastic control 
problem [8]-[9]. In [10][11], multiple cooperative consumers are 
myopically minimizing their current total costs by solving static 
optimization problems. Conventional distributed algorithms are 
proposed to find the optimal prices. The second category assumes 
consumers being price-anticipating and myopically minimizing 
their costs(i.e., they consider how their consumption will affect the 
prices). These works [5]-[7][13] model the interactions among 
myopic consumers as one-shot games and studied the Nash 
equilibrium (NE) of the game. Existing works with multiple 
consumers [2]-[7][10]-[14] assume that the myopic consumers aim 
to minimize their current costs. The optimal DSM strategies in these 
works are stationary, i.e., all consumers adopt fixed power 
consumption patterns as long as the system parameters (e.g., the 
consumers’ desired power consumption patterns) do not change. 
However, as we will show later in the paper, the stationary DSM 
strategies are suboptimal in terms of the long-term total cost. 
  In this paper, we also model the consumers as price-
anticipating. However, in our model, since the foresighted 
consumers stay in the system for a long time and interact with each 
other repeatedly, we formulate the consumers’ interactions as a 
repeated game. Although the proposed methodology can be applied 
to improve the performance of stationary DSM strategies for any SP 
scheme, we illustrate our approach using the CPP scheme, which 
has been widely used for residential consumers and is shown to 
work well in practical scenarios [15]-[17]. CPP defines peak days in 
a year or peak times in a day, and charges higher prices during these 
peak hours if CPP events, such as system load warning, extreme 
weather conditions, and system emergencies, occur [16].  
 We propose the nonstationary DSM strategy in the repeated 
energy scheduling game framework, where the consumers may 
adopt different power consumption patterns (e.g., a consumer may 
shift its peak-time consumption today but not tomorrow) even if the 
system parameters remain the same. The strategy recommends 
different subsets of consumers (referred to as the active set) to shift 
their peak-time consumption each day, based on their preferences 
and the past history of consumption pattern shifts. These consumers 
purposely incur their current discomfort costs to minimize the price. 
In return, they will enjoy in the future lower billing costs without 
incurring discomfort costs when other consumers are chosen in the 
active set. In this way, the proposed strategy minimizes the long-
term total cost while ensuring fairness among the consumers. In 
addition, the proposed strategy is Incentive-Compatible (IC), 
namely the self-interested consumers will find it in their self-
interest to follow the recommended strategy.  

 
2. SYSTEM MODEL 

 
2.1. Energy Scheduling Game 
 
A smart grid system consists of a utility company and multiple 
consumers, as shown in Fig.1. Time is divided into periods 

, , ,0 1 2t  L , and each period is divided into H N  time slots 
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Fig. 1. Smart Grid System Model. 

with equal length. We denote the set of time slots by 
{ , ,..., }1 2 HH . Note that we use “period” to denote each stage of 

the interaction among consumers and use “time slot” to denote the 
discrete time to schedule power usage within a period. In this paper, 
we consider a period to be one day as in [5]-[8][10]-[14], and each 
slot can be one or multiple hours.  
 We denote the set of consumers by { , ,..., }1 2 NN . The 
action of consumer i N in period t  is its power consumption 
pattern, denoted by , ,( , ),1

t t t
i i i Ha a a  , where , i

t
i ha A  is the 

power consumption at each time slot and iA  is the possible power 
consumption set.  
 The power consumption ,

t
i ha  at time slot h  consists of non-

shiftable load and shiftable load, denoted by , 0t
i hb   and , 0t

i hs  , 
respectively. The non-shiftable load, such as lighting, cooking, 
watching TV, is not controllable by smart meters, while the 
shiftable load, such as dish and clothes washing, heating and 
cooling systems, can be controlled by the smart meters [5]-[7].  
 We denote by ,1

H t
i h ih

a A


  the daily total power 
consumption for residential consumer i , where iA  is either a 
constant or slowly varying as in [5]-[7][11]-[14]. We denote by 

( , , )1 2
t t t t

Na a a L Aa  the power consumption profile of all 
consumers, where 1

H
i

N
iA A . The total load at time slot h , 

denoted by ,1

Nt t
h i hi
l a


 , is the sum of all consumers’ power 

consumption.  
 The desired power consumption pattern in each period for 
consumer i  is denoted by , , ,[ , , ]1 2i i i i H

H
ia a a a L A , which refers 

to its preferred daily power consumption pattern [20]. The 
corresponding total load is denoted by ,1

N

h i hi
l a


 . Define 

arg maxh hh l H  as the peak time of the day, the length of which 
changes according to H . Empirical studies show that, compared 
with industrial and commercial consumers, residential consumers 
have very similar peak-time shiftable loads [17], implying 
that , ,

t
i h i h ha b s  , for each consumer i . 

 The cost :ic a RA of consumer i  consists of its billing and 
discomfort costs: 
 ,( ) ( ) ( )

1

Ht t t t
i h i h i ih

c p a d a


 a a , (1) 

where :hp a RA  denotes the price at time slot h , : ii
Hd a RA  

denotes the discomfort cost of consumer i .  
 In CPP scheme, the utility company charges a higher price in 
the critical peak time when CPP events occur [14]-[16]. We model 
the CPP pricing scheme with a single critical peak time and 
consider the CPP events triggered by the total load in the system. 
The time-varying price function ( )t

hp a  is defined as: 
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p l l

    
a , (2) 

where Hi Lop p are the peak price and off-peak price of the pricing 
model and thl  is the threshold of the total load. When t

h thl l , the 
higher price will not be triggered and Lop  will be adopted. When 

t
h thl l , the CPP event occurs and the higher price Hip  will be 

adopted. The threshold thl  is set to be below the peak load and 
above the off-peak load, namely, 
 , , \{ }      th thhh

l l l l h h   H . (3) 

 Given peak load reduction goal thl , we further set 
  /thh hl lm s , where m ¥  is the smallest number of 

consumers needed to shift their peak-time consumption such that 
the peak-time price is low. We denote the prices within a day by 

( , , )1 2
t t t t

Hp p pp L . 
 We use a discomfort cost function to model the consumers’ 
discomfort from rescheduling their power consumption patterns, 
i.e., the “distance” between consumer’s desired demand and actual 
consumption [12][18]-[21]. As in [12][18], we use a linear weighted 
function to model the discomfort cost: 

 , , ,(| |) ,
( )

,
1

 

0                                   

H t t
i h i h i h i i it h

i i
t
i i

k a a a a
d a

a a




    

 , (4) 

where , ,i h ik  R  are parameters of  the discomfort cost function.  
 Consumer i ’s minimum cost achievable is denoted by 

( )=min =i i Lo ic c p AAa a , and consumer i ’s minimum cost 
achievable, when consumer i  shifts all its peak-time shiftable load, 
is denoted by 

, ,
( ) ( )min

i h i hi a b i Lo i i ic c p A d a   % %Aa , a , where the 
last term satisfies 

, ,
( )argmin H

i i hi i h
i i ia a b

a d a
 

%
A , 

.  

 Based on the relationship between billing and discomfort costs, 
consumers with low discomfort costs only care about billing costs 
and always shift and choose ia% , while consumers with high 
discomfort costs will incur high discomfort costs when altering 
power consumption patterns and always choose ia . Hence, we only 
consider the DSM strategy for consumers with medium discomfort 
costs, namely, 

 ,

( )
( ) [( )]  Hi Lo h

i i i Hi Lo i h

p p l
d a and p p a

m



  % . (5) 

 The first inequality implies that the discomfort cost is not too 
large, such that the consumers are willing to shift their peak-time 
consumption as long as their billing costs can be greatly reduced. 
The second inequality implies that the discomfort cost is not too 
small, such that each consumer does care about its own discomfort 
cost and is not willing to shift its peak-time consumption every day. 
 The one-shot energy scheduling game can be written as 
{ , } }{ , }{1 1

N N
i i ii c N A , where N , { } 1

N
i iA  and { } 1

N
i ic     denote the 

sets of consumers, of actions, and of cost functions, respectively.  
 Next, we formalize the consumers’ interaction as a repeated 
game. In each period t , consumer i  determines t

ia  based on its 
history, a collection of all its past power consumption patterns and 
the past prices made public to the consumers. The public history is 
defined as { , ,... } ), (0 1 1t t H tp p p   P  for 0t   and the initial 



history is defined as 0  . The public strategy of consumer i  is 
defined as a mapping from public history to current actions, denoted 
by (: )0

H t
i t i 

∪ aP A , where ( )0H P [22]. Due to realization 
equivalence principle [22, Lemma 7.1.2], the operating points 
achieved by public strategies are equivalent to those achieved by 
strategies using the entire history. 
 Given the strategy profile of all consumers, denoted by 

( , , )1 2 N   L , consumer i ’s average long-term cost is 
discounted by a factor [ , )0 1  : 
 ( ) ( ) ( ( ))

0
1 t t

i it
C c  




    , (6) 

where ( ( ))t
ic   is the cost of consumer i  in period t . The 

discount factor represents how much the consumers care about 
tomorrow’s costs relatively to today. A larger discount factor 
indicates that consumers care more about future costs. The 
corresponding long-term discomfort cost is defined as 

( ) ( ) ( ( ))
0

1 t t
i i i it

D d    



   . 

 Hence, the repeated energy scheduling game can be written as 
{ , ( } ( )) , }{ , }{10 1

H t
t i

N N
i i iC  

∪N P  , where N , ( )0
H t

t

∪ P , 

{ } 1i
N
i   and ( )}{ 1

N
i iC   are the sets of consumers, of public 

histories, of strategies, and of cost functions, respectively. 
 
2.2. Problem Formulation 
 
 The designer is the benevolent utility company that aims to 
minimize the total cost in the smart grid system with self-interested 
consumers. However, maintaining fairness among all the consumers 
is also essential [17]. Hence, the mechanism will ensure that the 
average discomfort cost of consumer i  is no greater than a 
maximal value ,maxiD . Therefore, the optimal IC DSM mechanism 
Design Problem (DDP) can be formulated as 
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 The utility company will solve this problem, then recommend 
the consumers with the optimal solution * . 
 

3. OPTIMAL STRATEGIES 
 
In this section, we first discuss the performance of the one-shot and 
repeated energy scheduling games, and then propose the 
nonstationary algorithm that solves the DDP problem.  
 
3.1. One-shot vs. Repeated Energy Scheduling Game 
 
We formally characterize the NE of the one-shot energy scheduling 
game and the Pareto-optimal region (achievable cost profiles) of the 
repeated energy scheduling game. We state these in the two 
following theorems. 
 Theorem 1 (Nash Equilibrium of the One-shot Game): The one-
shot energy scheduling game has a unique NE, in which each 
consumer chooses its desired power usage as 
 * ,i ia a i  N . (7) 
Proof: See on-line proof [23].□ 

 Theorem 2: The Pareto-optimal region of the repeated energy 
scheduling game is 

( , , , ) | ( ) / ( ) ,{ }1 2 1

N

N i i i i i ii
C C C C c c c m C c


      % % %LB C .  (8) 

 In addition, the stationary DSM strategies can only achieve the 
extreme points1 of B . 
Proof: See on-line proof [23]. □ 
 By adding IC and the maximum discomfort costs constraints, 
the feasible Pareto-optimal region can be written as 

 ( )( , , , ) | , ,
( )

{ }1 2 1

N i i
N i i i ii

i i

C c
C C C m C c C C

c c


   


  % %L

%
BC C , (9) 

where ,max ,min{ , }i i i NEC C C , and ,max ,maxi i iC c D % . 
 The results of Theorem 1 and 2 state that the Pareto-optimal 
region of the repeated energy scheduling game, except for the 
undesired extreme points, cannot be achieved by stationary DSM 
strategies for either self-interested or obedient consumers. Next, we 
will propose the nonstationary strategy to achieve the operating 
points. 
 
3.2. Nonstationary DSM Mechanism 
 
Given the Pareto-optimal region, we can then reformulate the DDP 
problem as a linear programming problem: 

 minimize    ii C
 NBCC

.  (10) 

 We can solve this linear programming problem (10),  and 
denote the solution by * * * *, ,( )1 2 NC C C LC . Given the operating 
point *C , we can use the Nonstationary DSM (N-DSM) algorithm, 
described in Table I, to construct the DSM strategy. In period t , the 
N-DSM algorithm chooses the active set ( )I t  I  consisting of m  
out of N  consumers to reschedule their power consumption 
patterns, where I  is the set of all possible index combination that 
containing m  consumers out of N . The choice of active set 

                                                           
1 An extreme point of a convex set is the point that is not the convex combination of 
any other points in this set. In our case, since B  is part of a hyperplane, the extreme 
points will be the vertices of B . 

TABLE I. NONSTATIONARY DSM (N-DSM) ALGORITHM 
Input: Target average cost vector * * * *, ,( )1 2 NC C C LC , 0t  . 
Output: Optimal strategy 
1: Set *( ) ( ) ( )j j j j jg t C c c c  % % . 
2: Repeat 
3: If ( ) ,Hihp p t    , then 

4:        Recommend action ia  to all consumer i . 
5: Else 
6:         Find the active set ( ) { , , }1 2 mI t i i i L  of m  consumers, 

            who have the m  largest indices ( )jg t . 

7:         Recommend action ia%  to ( )i I t , and ia  to ( )i I t . 

8:         Observe consumers’ action ia . 
9:         If all consumers follow the recommendation, then  
10:            Update { ( )}( ) [ ( ) ( ) ] /1 1i i i I tg t g t      1  for all i . 

11:            Broadcast ( )h Lop t p  for all h . 
12:        Else 
13:            Broadcast ( ) Hihp t p  and ( ) ,h Lop t p h h  . 
14:        End if          
15: End if 
16: 1t t   
17: End Repeat 



TABLE III. COMPARISON OF TOTAL COSTS ACHIEVED BY DIFFERENT ALGORITHMS 
 Number of consumers (Homogeneous, PAR<2.280) Number of consumers (Heterogeneous, PAR<2.359 ) 

 30 50 80 100 200 30 50 80 100 200

Total cost 

OG-DSM 49.95 83.25 133.20 166.50 333.00 50.95 84.95 135.90 169.80 339.70
JO-DSM 42.18 70.08 111.95 139.86 279.40 42.37 70.41 112.46 140.48 280.66
SC-DSM 46.63 77.71 124.34 155.42 310.84 47.73 79.59 127.32 159.07 318.26
N-DSM 30.78 50.78 80.78 100.78 200.78 26.23 43.25 68.35 84.50 168.73

Performance 
gain 

Over OG-DSM 38% 39% 39% 39% 40% 49% 49% 50% 50% 50%
Over JO-DSM 27% 28% 28% 28% 28% 38% 39% 39% 40% 40%
Over SC-DSM 34% 35% 35% 35% 35% 45% 46% 46% 47% 47%

 depends on “how far” they are from their target cost, which is 
measured by index ( )ig t . The consumers with m  largest ( )ig t  
will be chosen in the active set. 
 Theorem 3: If the discount factor   satisfies 
 / ( )1 1 1N m    .  (11) 

then the three following statements hold: (1) The feasible Pareto-
optimal region BC  is achievable; (2) the optimal operating point 

*C  can be achieved by the N-DSM algorithm; (3) the N-DSM 
algorithm is IC. 
Proof: See on-line proof [23]. □ 
 Theorem 3 states that when the discount factor satisfies (11), 
the optimal nonstationary DSM mechanism can be constructed by 
the N-DSM algorithm. 
 

4. NUMERICAL RESULTS 
 
In this section, we compare the performance of our proposed DSM 
mechanism with those obtained using existing methods. We 
compare with the One-shot Game based stationary DSM (OG-DSM) 
algorithms with myopic price-anticipating consumers [5]-[7][13], 
the Joint Optimization (JO-DSM) algorithms with myopic price-
taking consumers [10][11], as well as the Single-consumer 
Stochastic Control (SC-DSM) methods [8]-[9]. The OG-DSM 
operates at NE of the one-shot energy scheduling game, which is 
characterized in Theorem 1. The JO-DSM assumes that the 
obedient consumers jointly minimize the total cost of the system 
and the optimal performance of stationary DSM mechanism can be 
achieved by appropriate pricing schemes. The SC-DSM responds to 
the utility company’s price Hihp p and ,h Lop p h h  . In this 
case, the consumer buys energy in advance according to its 
scheduled power consumption pattern ia . We assume that 
renewable energy is available with probability2 .0 8 , in which 
case the consumer can reschedule its power consumption pattern to 
the desired pattern without suffering the discomfort cost since the 
energy supply is abundant. The renewable energy is not available 
with probability .1 0 2  , in which case the consumer must 

                                                           
2  This comes from the uncertainty of renewable energy generation (whether it is 
windy in wind energy generation, whether it is shiny in solar energy generation, etc.). 

comply with its scheduled power consumption pattern and will 
incur discomfort cost ( )i id a . 

In simulation, we set 24H  , .0 995  , .0 8Hip  $/kWh 
and .0 1Lop   $/kWh3. We set the PAR goals (corresponding to 
threshold thl ) for homogeneous and heterogeneous scenarios, and 
keep them invariant over time. We simulate both the scenario with 
heterogeneous consumers with parameters shown in Table II and 
Fig. 2 and the scenario with homogeneous consumers with the same 
parameters as Type 1 consumers described in Table II and Fig. 2. In 
this experiment, the shiftable load of each consumer is set to be 
40% of the consumer’s total load.  
 Given the same PAR goal, the comparison of total costs using 
these algorithms is shown in Table III. We can see that when the 
number of consumers increases, the N-DSM algorithm significantly 
outperforms other three algorithms. The cost reductions compared 
to OG-DSM, JO-DSM and SC-DSM are 40%, 28% and 35% in 
homogeneous case and 50%, 40% and 47% in heterogeneous case, 
respectively. Note that our algorithm, which is IC, can significantly 
outperform the JO-DSM algorithm, even though it is not IC. 

 
5. CONCLUSIONS 

 
We proposed a nonstationary DSM mechanism and rigorously 
proved that the proposed N-DSM algorithm can achieve the social 
optimum in terms of the long-term total cost, and outperform 
existing stationary DSM strategies. Moreover, the proposed 
mechanism is IC, meaning that each self-interested consumer 
voluntarily follows the power consumption patterns recommended 
by the optimal DSM mechanism.  Simulation results validate our 
analytical results on the DSM mechanism design and demonstrate 
up to 50% performance gains compared with existing mechanisms, 
especially when there are a large number of heterogeneous 
consumers in the systems.  

                                                           
3 According to [15][17], the peak price is often at least 6 times higher than the off-
peak price. 

 
                     Fig.2. The Desired Power Consumption Patterns of Type 1, 2, 3 Consumers. 

TABLE II. PARAMETERS OF THREE TYPES OF CONSUMERS 
 

iA (kWh) , ( )1  14i hk h to / 

, ( )15  24i hk h to ($/kWh) 
i ($) ,maxiD ($) 

Type 1 10 0.2/0.1 0.7 0.71 
Type 2 8 0.1/0.05 1.5 0.91 
Type 3 11 0.15/0.1 1.2 0.95 
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