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ABSTRACT

In this paper, we propose an online learning algorithm for
optimal execution in the limit order book of a financial asset.
Given a certain amount of shares to sell and an allocated time
window to complete the transaction, the proposed algorithm
dynamically learns the optimal number of shares to sell via
market orders at pre-specified time-slots within the allocated
time interval. We model this problem as a Markov Decision
Process (MDP), which is then solved by dynamic program-
ming. First, we prove that the optimal policy has a specific
form, which requires either selling no shares or the maximum
allowed amount of shares at each time slot. Then, we consider
the learning problem, where the state transition probabilities
are unknown and need to be learned on-the-fly. We propose a
learning algorithm that exploits the form of the optimal policy
when choosing the amount to trade. Our numerical results
show that the proposed algorithm performs significantly better
than the traditional Q-learning algorithm by exploiting the
structure of the problem.

Index Terms— Limit order book, Markov decision pro-
cess, online learning, dynamic programming.

1. INTRODUCTION

Optimal execution of trades is a problem of key importance
for any investment activity [1–4]. Once the decision has been
made to sell a certain amount of shares the challenge often
lies in how to optimally place this order in the market. In
simple terms, we can formulate the objective as selling at the
highest price possible. Not only do we want to leave as little a
foot-print in the market as possible, but also to sell at a price
favorable to the order in question, while ensuring the trade
actually gets done.

More formally we define the goal as to sell1 a specific
number of shares of a given stock during a fixed time period in
a way that minimizes the accumulated cost of the trade. This
problem is also called the optimal liquidation problem. In this
problem, the traders can specify the volume and the price of

1This problem can generalized to buying problem as well.

shares that they desire to sell in the limit order book (LOB). A
brief discussion of the LOB mechanism is given in [5, 6].

Numerous prior works solve this problem using static opti-
mization approaches or dynamic programming [3, 7]. Several
other works tackle this problem using a reinforcement learning
approach [4, 5, 8].

Reinforcement learning based methods consider various
definitions of state, such as the remaining inventory, elapsed
time, current spread, signed volume, etc. Actions are defined
either as the volume to trade with a market order or as a
limit order. A hybrid method is proposed in [4]: firstly, an
optimization problem is solved to define an upper bound on the
volume to be traded in each time slot, using the Almgren Chriss
(AC) model proposed in [3]. Then, a reinforcement learning
approach is used to find the best action, i.e., the volume to
trade, which is upper-bounded by a relative value obtained in
the optimization problem. Another prior work [5] implements
the same approach with a different action set and state space.
In all of the above works, the authors used Q-learning to find
the optimal action for a given state of the system. In [4, 5]
the learning problem is separated into training and test phases,
where the Q values are only updated in the training phase, and
then, these Q values are used in the test phase.

Unlike prior approaches, we use a model based approach,
in which we start with a market model, and then, learn the state
transition dynamics of the model in an online manner. For this,
we design an algorithm that selects actions by learning the state
transition probabilities of the market variables. Specifically,
we separate the state space into private and market variables.
We define the market variable as the difference in bid price of
a time slot from the bid price of the time slot at the beginning
of a round. Then, we deduce the form of the optimal policy
using the mentioned decomposition of the variables, which
reduces the number of actions to learn, and hence, speeds up
both optimization and learning. The contributions of this paper
can be summarized as follows:

• We propose a new model for LOB trade execution with
private and market states, and show that the optimal
policy has a special structure.

• We propose an online learning algorithm that greed-
ily exploits the estimated optimal policy. Unlike other
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reinforcement learning based approaches [9, 10], this
algorithm does not need explorations to learn the state
transition probabilities.

• We show that the proposed algorithm provides signifi-
cant performance improvement over its competitors in
real-world datasets.

2. PROBLEM FORMULATION

2.1. States, Actions, Transitions and Cost

The system operates in rounds indexed by ρ ∈ {1, 2, . . .}.
Each round is composed of L time slots, where L denotes the
maximum execution time. The set of time slots is denoted by
L := {1, . . . , L}. The current round ends and a new round
begins when the maximum execution time is reached.

States: The system is composed of a finite set of
states denoted by S := I × M, where I denotes the pri-
vate state space and M denotes the market state space.
I := {Wmin, . . . ,Wmax} is the set of inventory levels of
shares, where 0 < Wmin ≤ Wmax < ∞ and Wmin, Wmax

are integers. The private state at time slot l of round ρ is
denoted by I lρ. We assume that I1ρ = Wρ where Wρ ∈ I
is the initial inventory level at round ρ. Next, we defineM.
For this, let pb(ρ, l), pa(ρ, l) and pm(ρ, l) be the bid, ask
and mid-price (the average between bid and ask price) of
time slot l in round ρ. The return of round ρ is defined as
Ret(ρ) := log(pm(ρ, L)/pm(ρ, 1)). The volatility (standard
deviation of the return) up to round ρ is denoted by σρ. Based
on this,M is defined as the set of integers that represent the
amount of change in the bid price of a time slot in a round
from the bid price in the beginning of the round in units of σρ.
The market state at time slot l of round ρ is denoted by M l

ρ.
By definition, M1

ρ = 0 for all rounds.
We define the reference price of round ρ as pr(ρ) :=

pm(ρ, 1) and the bid-ask spread in time slot l of round ρ as
Blρ := pa(ρ, l)−pb(ρ, l). We have pb(ρ, l) = pm(ρ, l)−Blρ/2.
In our model, when the market is in state M in time slot l of
round ρ, the bid price is modeled as pb(ρ, l) = pb(ρ, 1)+Mσρ.
This means that the bid prices are put into discrete values with
width σρ, where each one of them is indexed by M ∈M. We
let Slρ := (I lρ,M

l
ρ) denote the joint state in time slot l of round

ρ.
Actions: Actions are defined to be the amount of shares to

be traded with a market order2 [4,8]. In each round, a sequence
of actions is selected with the aim of minimizing the total trade
cost. Let alρ be the action taken at time slot l in round ρ. We
impose the following assumption on the effect of actions to
the market states.

2A market order to sell is an order to execute a trade at whatever the best
prevailing bid price which is a limit order with a price limit of zero at that
time.

Assumption. It is assumed that the order book is resilient to
the trading activities.

The assumption implies that an action in a time slot has to
be chosen such that it does not have an influence on the market
state during a round. In practice this means that the market
order should not be larger than the depth of the order book at
the best bid. This is imposed, for instance, in [3, 4], which
effectively prevents taking large actions. We assume that the
action taken in time slot l of a round cannot be larger than the
integer Al, where Al, l ∈ L is obtained in each round by using
the AC model, and hence, we have

∑L
l=1Al = Wρ. Then, we

have alρ ∈ Al := {0, . . . , Al}, ∀l ∈ L − {L}. For l = L, the
only possible action is to sell the remaining inventory.

Transitions: The assumption implies that the market state
in a round evolves independently from the actions selected
by the trader. Hence, the actions only affect the private state,
and the market state is modeled as a Markov chain. Let S′ :=
(I ′,M ′) and S := (I,M). The state transition probabilities
can be written as

Pr(Sl+1
ρ = S′|Slρ = S, alρ = a) = P (M,M ′)I(I ′, I − a),

S, S′ ∈ S, a ∈ Al, ρ ≥ 1

where I(a, b) represents the indicator function which is zero
when a 6= b and one when a = b, and P (M,M ′) denotes the
probability that the market state transitions from M to M ′.

Cost: The cost of trade in a round is defined as the imple-
mentation shortfall, which is given as

ISρ :=

(
Wρpr(ρ)−

L∑
l=1

alρpb(ρ, l)

)
/(Wρpr(ρ)) (1)

for a sequence of market states (M1
ρ , . . . ,M

L
ρ ), a sequence

of actions (a1ρ, . . . , a
L
ρ ), an inventory level Wρ such that∑L

l=1 a
l
ρ = Wρ, and a reference price pr(ρ). Let Xρ :=(

Wρ, pr(ρ), σρ, B
1
ρ

)
be the trade vector of round ρ and let X

be the support of this vector. By using the state definition and
B1
ρ , (1) can be re-written as ISρ =

∑L
l=1 CXρ(M

l
ρ, a

l
ρ) where

CXρ(M
l
ρ, a

l
ρ) :=

1

Wρpr(ρ)

[
alρ

(
B1
ρ

2
−M l

ρσρ

)]
.

2.2. Value Functions and the Optimal Policy

If the state transition probabilities were known in advance,
then, the optimal policy can be computed by dynamic pro-
gramming. In this subsection, we consider this case to gain
insight on the form of the optimal policy.

A deterministic Markov policy with time budget L spec-
ifies the actions to be taken for each state and trade vector
at each time slot. Let π := (π1, π2, . . . , πL) denote such a
policy, where πl : S × X → Al. We use πl(Ml, Il, X) to
denote the action selected by policy π in time slot l when the

899



joint state is (Ml, Il) in time slot l given X .3,4 Let Π denote
the set of all deterministic Markov policies with time budget
L.

The cost incurred by following policy π given trade vector
X ∈ X is Cπ

X =
∑L
l=1 CX(Ml, πl(Ml, Il, X)). The optimal

policy that minimizes E[Cπ
X ] is given as π∗(X) where the

expectation is taken over the randomness of the market states.
Let V ∗l (M, I,X) denote the expected cost (value function) of
policy π∗(X) starting from state S = (M, I) at time slot l
given X . The Bellman optimality equations [11, 12] are given
below: ∀M ∈M, ∀I ∈ I, ∀X ∈ X , ∀l ∈ L − {L},

Q∗l (M, I,X, a) := CX(M,a)

+
∑

M ′∈M
P (M,M ′)V ∗l+1(M ′, I − a,X) (2)

V ∗l (M, I,X) = mina∈Al Q
∗
l (M, I,X, a), ∀l ∈ L−{L} and

V ∗L (M, I,X) = CX(M, I). The optimal action can be com-
puted by π∗l (M, I,X) = arg mina∈Al Q

∗
l (M, I,X, a) and

we know that π∗L(M, I,X) = I . In order to obtain the optimal
policy, these equations need to be solved backwards from time
slot L down to 1.

3. ON THE FORM OF THE OPTIMAL POLICY

In this section, we show that the optimal policy takes a simple
form, which reduces the set of candidates for the optimal action
in each time slot to two.

Theorem. Let gX(M) := (B/2−Mσ) /(prW ) where X =
(W,pr, σ, B).5 Then, the optimal action at each time slot is

π∗l =

{
0 if gX(Ml) > E[gX(ML)|Ml]

Al if gX(Ml) ≤ E[gX(ML)|Ml]
,∀l ∈ L − {L}

and π∗L = IL.

Proof. The proof is given in the online appendix [13].

The theorem shows that the optimal action at each time
slot depends on the current market state and the distribution
of the market state at the final time slot given the current state.
The trader may decide to sell all of the available limit at the
current time slot or save the shares up to the final time slot.
The intuitive reason behind the result is that we have a linear
cost function in a and gX(M). If the expected market state
in the final time slot is greater than the current market state,
we desire to wait and sell the maximum allowed amount of
shares to sell in the current time slot in the final time slot. The
reason for this is that, the final time slot is the only time slot

3When clear from the context, we will drop the arguments, and represent
the action selected by the policy in time slot l by πl.

4We replace M l
ρ and Ilρ with Ml and Il when the round is clear from the

context.
5CX(M,a) = agX(M).

where we can sell more than the pre-defined limit. Thus, the
set of candidate optimal actions is given as A∗l := {0, Al},
∀l ∈ L − {L}. Therefore, the learning problem reduces to
learning the best of these two actions in each time slot.

4. THE LEARNING ALGORITHM

In this section, we propose a learning algorithm that learns
the optimal policy by exploiting the form of the optimal pol-
icy given in the previous section by learning the state transi-
tion probabilities of the market variables. This algorithm is
named as Greedy exploitation in Limit Order Book Execution
(GLOBE) and its pseudocode is given in Algorithm 1.

Algorithm 1 GLOBE

1: Input: L, S
2: Initialize: ρ = 1,N1(M,M ′) = N1(M) = 0, ∀M,M ′ ∈
M

3: while ρ ≥ 1 do
4:

P̂ρ(M,M ′) =
Nρ(M,M ′) + I(Nρ(M) = 0)

Nρ(M) + |M|I(Nρ(M) = 0)

5: Update σρ and temporary price impact parameter of the
AC model based on the past observations

6: Observe Xρ = (Wρ, pr(ρ), σρ, B
1
ρ)

7: Compute Al based on the AC model [3, 4], ∀l ∈ L
8: Compute the estimated optimal policy by dynamic pro-

gramming using the action set A∗l , ∀l ∈ L − {L} and
P̂ρ(M,M ′) values.

9: I1ρ = Wρ, l = 1
10: while l < L do
11: Observe market state M l

ρ, obtain alρ ∈ A∗l using the
estimated optimal policy

12: Calculate CXρ(M
l
ρ, a

l
ρ)

13: I l+1
ρ = I lρ − alρ

14: l = l + 1
15: end while
16: aLρ = ILρ
17: ρ = ρ+ 1
18: Compute Nρ(M) and Nρ(M,M ′), ∀M,M ′ ∈M
19: end while

By round ρ, GLOBE observes (ρ− 1)(L− 1) state transi-
tions. Let Nρ(M,M ′) denote the number of occurrences of a
state transition from market stateM toM ′ andNρ(M) denote
the number of times market state M is visited by round ρ. The
estimate of the transition probability from state M to M ′ used
at round ρ is denoted by P̂ρ(M,M ′) := Nρ(M,M ′)/Nρ(M)
for Nρ(M) > 0. At the beginning of each round, GLOBE
implements dynamic programming with action set A∗l instead
of Al to find the estimated optimal policy, and follows that
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policy during the round. Alternatively, it can also use the rule
given in the Theorem at each time slot of the round in order to
decide on whether to sell Al or 0, by finding the expected mar-
ket state in the final time slot of the round using P̂ρ(M,M ′)
values. The above procedure repeats in each round.

5. NUMERICAL ANALYSIS

Our numerical analysis is based on four real-world datasets
that contain the order book data for Google, Amazon, Intel
and Microsoft shares traded on NASDAQ.6 7

In this problem, the trader wants to sell Wρ number of
shares in round ρ at the best price using market orders. We
take the difference in the bid prices as the only market variable
and the private variable is assumed to be the inventory level.
The number of states varies from dataset to dataset based on
the volatility scale. We assume that when the market is at state
M in time slot l of round ρ, we have pb(ρ, 1)+(M−0.5)σρ ≤
pb(ρ, l) ≤ pb(ρ, 1) + (M + 0.5)σρ. To reduce the number of
market states, we use 20σρ instead of σρ in the market state
definition and the above inequalities, for which GLOBE is
shown to work well. The initial inventory level of each round
is drawn uniformly at random from [10, 100]. The time horizon
of the original data is approximately 6 hours and 30 minutes.
Each data instance for each time slot is created by taking the
average of the mid/bid/ask prices for every 10 second interval.
Then, the dataset is divided into rounds, where each round
consists of L = 4 consecutive time slots.

The volatility parameter used in the AC model is updated
in an online manner as we observe more data. Furthermore,
similar to [4], we set the permanent price impact parameter to
0. In addition, we set λ = 0.1 in the AC model given in [3],
and the temporary price impact parameter is calculated and
updated according to [3]. Next, we describe the algorithms
that we compare GLOBE against:8

(1) Equal Shares (EQ): In this method, we divide the shares
equally among the time slots and at each time slot of round ρ,
we sell bWρ/Le [7]. (2) Almgren Chriss (AC) [3]: The volatil-
ity and temporary price impact parameters are updated after
each round. (3) Q-Exp: This is a Q-learning based method,
which uses the state space defined in [4] and the action space
defined in our paper. It uses the ε-greedy policy [14] to explore
(5%) or exploit (95%). In this method, the market state space
is the combination of bid-ask spread and bid volumes, where
each variable consists of 10 different states. (4) Q-Mat: This is
the method proposed in [4], but with the action space defined
as in our paper. This method uses the first half of the dataset

6https://lobsterdata.com/info/DataSamples.php.
7For simulations, to create both increasing and decreasing trends, the

data is expanded by attaching a flipped version of the data to the end
of the original data. Then, this extended data is repeated four times.
For instance, given the original data ”123”, the expanded data becomes
”123321123321123321123321”.

8The results of all of the Q-learning based methods are averaged over 50
iterations.

Table 1: RC of the algorithms at the end of the time horizon with respect to
the AC model calculated over the test set.

Method /
Dataset

GOOG AMZN INTC MSFT

EQ 0.145 0.017 -0.161 0.075
Q-Exp 0.303 0.128 -0.459 -0.138
Q-Mat 0.398 0.316 -0.365 -0.141
Q-Exp+ 0.252 0.116 -0.64 0.057
Q-Mat+ 0.532 1.158 -0.451 -0.284
GLOBE 3.064 2.783 3.167 2.555
GLOBE+ 6.527 7.563 7.414 5.988

as the training set to calculate the Q values, and the rest as
the test set. (5, 6, 7) Q-Exp+, Q-Mat+ and GLOBE+: These
are almost the same as Q-Exp, Q-Mat and GLOBE, where the
only difference is that the set of available actions in time slot l
ranges from 0 to 2Al. Unlike GLOBE, GLOBE+ does not use
the result of the Theorem to reduce the size of the action sets.

For each method, we calculate the Averaged Cost Per
Round (ACPR) at the end of each round, which is given as
ACPRρ =

∑ρ
i=1 ISi/ρ. Then, we compare ACPRR of each

method (alg) against the AC model by roundR, using a perfor-
mance metric similar to the one used in [15], which is called
the Relative averaged Cost per round (RC), given as

RCR(alg) :=
ACPRR(AC)− ACPRR(alg)

|ACPRR(AC)|
× 100.

In Table 1 we report the RC of the algorithms for the second
half of the dataset (test dataset)9. We observe that GLOBE
and GLOBE+ outperforms other methods in the considered
datasets. GLOBE+ also outperforms GLOBE since it has
access to a larger action set.

6. CONCLUSION

In this paper, we proposed an online learning algorithm for
trade execution in LOB. We modeled this problem as an MDP
using a novel market state definition, and derived the form
of the optimal policy for this MDP. Then, we developed a
learning algorithm that learns the optimal action using the
state transition probability estimates. We also showed that
our method outperforms its competitors in a small scale real-
world finance dataset. As a future work, we will investigate
the performance of GLOBE on larger real-world datasets with
more different types of stocks.
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